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LETTER TO THE EDlTOR 

On the absence of directed fractal percolation 

L Chayest 
Depmment of MathematiQs, University of California, Los Angeles, California 90095-1555. USA 

Received 28 Febmary 1995 

Abstract. In the context of the fractal percolation process, the possibility of directed polation 
is raised: Is there any non-hivial value of the parameters such that there is ‘oriented percolation’ 
or, perhaps ‘stiff percolation’ in this model? Somewhat surprisingly, the answer is no. 

The fractal percolation process (Mandelbrot percolation) was invented in [1,2] and has been 
described in a number of places (see, e.g., [3] or [4]). A brief definition is as follows. Let 
N > 2 denote an integer, let Q E [O, 11 and let AD denote the unit square 10, 1l2. In the first 
stage, Ao i s  divided into Nz equal-sized squares, each of which is independently retained 
with probability Q or discarded with probability (1 - e). The set A1 c Ao is defined as 
the (union of the closure of the) squares that were retained. Next, A2 c A1 is obtained 
by performing the analogous procedure-scaled down in size by a factor of 1-0, all the 
squares of AI and, in a similar fashion, one generates Ak+l c Ak. The principal object of 
interest is the limiting set 

N 

A, = n Ai .  
k 

The sets Ak can also be regarded as subsets of 11.2,. . . , Nk}2 = Ak. The notions 
of connectedness in Ak are defined in the fashion that is usual for Z’. For example, 
a connected path in An is a sequence of points ( ( X I .  y l ) ,  . . . , (xm, y,)) in An such that 
Ixj+l - xj I + [yj+l - y, I = 1, j = 1, . . . , Nk - 1. Percolation, for this model, is defined as 
follows: Let @k denote the event 

@k = (AklAi contains a connected path between the left and right sides of [0, l]’} (2) 

monotone. Let @,(Q) = l i + m B k ( Q ) .  Percolation is said to occur whenever &(e) is 
positive. The percolation threshold is defined via 

and kt &(e) = p Q ( @ k )  denote the probability Of @ k .  Since @k 3 @k+lr the (Sk) are 

Qc = s~p(Ql@m(Q)  = 01. (3 1 
In [5] it was established that 1 > Q ,  > 0 for all N > 1. 

In the same way, one can define various sorts of directed percolation in the fractal 
percolation model. Let P denote a connected path in At. The path P is said to be stiff if, 
for all j ,  xj+l > xj and P is said to be NE-oriented if, for all j ,  xj+l 2 nj and yj+l > y j .  

The events q k  and @k may be defined for stiff and oriented crossings respectively as in 
equation (2) and similarly one has @ k ( Q )  and qk(Q) and their limits. Finally, Q, may be 
defined as in equation (3) as the threshold for stiff percolation while Q,  is defined 8s the 
threshold for oriented percolation. The principal result of this letter is 
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Theorem A. For all N, the stiff and oriented thresholds for the fractal percolation process 
are given by Q, = Q. = 1. 

Remark. (i) Theorem A has additional consequences in the context of Mandlebrot 
percolation. In particular, it was shown in [6] that in the region Q, < Q < QE the 
dimension of any crossing path in A, is greater than one. Evidently this is all of [Qc, 1). 
This, in turn, has ramifications for models of spin-systems in aerogels (see, e.g., [7]) that 
are currently under investigation. 

(ii) The result is somewhat surprising, at least to the author. who in particular is 
responsible for a widespread rumour to the con- of theorem A. 

Although it is obviously the case that Q. = 1 + Q, = 1, it is easier to first show that 
Qo = 1 and, as an immediate corollary to the methods, prove that Q, = 1. The theorems 
and proofs will be divided accordingly into parts & and A,. 

The proof of theorems A. For L > 0 consider the fractal percolation process on 
[0,1] x [0, L]. If L is an integer, is just L independent copies of the process on 
[0, 112. If L is not an integer, let us adhere to the rule that any square with a non-zero 
fraction both inside and outside of [0,1] x [0, L] is automatically retained. Let Af’ be 
the notation for a generic kth level configuration on [O, 11 x [O, L] ,  let AiL1 denote the 
corresponding kth level lattices and let TF1 denote the event that at the kth level, there is 
an =oriented path up through [O, 11 x [O, L]: 
Vf’ = {Ar’IAF’ contains a NE-oriented path connecting [O, 11 x (0) with [0, 11 x [L). 

(4) 
Assuming full retention for the first k - 1 iterations of the process, the kth level has the 
appearance of an =oriented percolation problem on an N‘ x LN’ lattice. As such, for 
any fixed Q c 1, it is straightfonvard to show (cf proposition 1 later) that if L gets too 
large, the probability of such crossings tend to zero with an exponential rate proportional 
to N‘. 

Remark. An optimal proof of this statement would require a detailed investigation of dual 
contours. For oriented and stiff site percolation problems on Zz it is convenient to go to 
a bond representation of the configuration: an oriented bond is occupied iff both the sites 
at its endpoints are occupied. Contours can then be defined on the dual lattice, according 
to the standard description, e.g. in [8]. This is tedious for site problems and, in the multi- 
scale versions, somewhat unwieldy. For the purposes of this letter, such complications will 
he avoided because the only contours that are used are simple enough to be verified by 
inspection. 

Definition. A simple contour on A!‘’ is a sequence of squares SI,. . . , SR of various 
scales, IS,[, . . . , [SRI with lowest-leftmost corners represented by the lattice points 
(XI, y d s . .  . . (XR, Y R )  such that 

(0) The S, are commensurate with the multiscale lattice structure, that is in units where 
the lattice spacing in AiL1 is unity, [Si[ is of the form N‘, I < k and (x i ,  yi) is of the form 
(UN’, bN’) with a and b positive integers not in excess of N”* and LN‘-’. (Explicitly, 
these squares are located where the correspondingly sized vacant squares of the process are 
allowed to be.) 
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(1) xi + ISjl   xi+^, i~ = 1, .. .~, R - 1. (Explicitly, the right edge of the ith square is 

(2)  yi < yi+l+ ISi+ll, i = 1,. . . , R - 1. (Explicitly, the top of the i + 1st square is not 

(3) X I  = 1 and X R  + lS~l - 1 = Nk. (Every vertical line runs into the contour.) 

A glance at figure 1 will elucidate the important features listed above. A generic simple 
contour for the kth level will be denoted by ck,a with 01 running over some appropriate ( L  
and k de endent) index set. It is clear that if each square of a contour is vacant, the 
event is precluded. By abuse of notation, the former event will also be denoted by 
Ck.0 and the event that at least one such 

aligned with the left edge of the i + 1st) 
below the bottom of the ith.) 

occurs will be denoted by CF’: 
c y  = U e,, . (5) 

Finally, noting that a kth level contour implies a k + 1st level contour, consider the event 

CgJ = Ucf’ (6) 

that there is a contour  at some level.. In the following, it is (easily) demonstrated that for 
L sufficiently large, Cg’ occurs with probability one. In a certain sense, this is close to 
theorem A, which is the statement that Cc1 occurs with probability one. 

U 

k 

Fiwre 1. A simple contour on [O. 11 x [O. 11. Here N = 3 and k = 5 

Pmposition 1. Let N > 1, Q < 1 and consider the process on [O, 11 x [0, L]  as described. 
Then for L sufficiently large, C z l  occurs with probability one. 

Proof. Let us investigate the probability of observing a Ck,a on AF1, that uses only the kth 
level squares., To simplify matters, let us further restrict attention to squares SI, . . . , SNt 
for which yj+l 2 yi. The entire contour can be described by the height differences 
Aj = yj - yj-1, i = 2, . . . , Nk; AI y~ - 1. If the problem is considered on the 
infinite strip of width Nk (i.e. him1) then the Ai are independent and identically distributed 
geometric random variables: 

(7) PQ(A~ = n) = @(I - Q). 
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A contour occurs on Aim1 with probability one, a contour occurs on AiL1 provided that the 
‘unconstrained‘ Ai satisfy xi Ai < N’L. The mean height of the unconstrained variables 
is NkQ/(l - Q). Thus, if L > Q/(l - QL as k + CO, a restricted contour of the type 
described occurs with probability tending to one exponentially with a rate proportional to 
N’. Evidently, in the multi-scale problem, these restricted contours are, with probability 
one, present on all but a finite number of levels. 

Proof of theorem A,. The stated result is established by showing that for any L > 0, the 
quantity C g I  has probability one. This will be accomplished by showing that if for some 
L, C g ]  has probability one, then so does C g ]  where L’ is any number that satisfies 

L’ > QL. 

It turns out that if L is an integer, the proof captures the essence of the argument and 
is devoid of a number of spurious details. Let us therefore run through this case first and 
afterwards fill in the extra steps required for non-integer L. 

Suppose then that L is an integer and consider the N‘ x LN‘ lanice, Af]. Here, and 
in what is to follow, let us set the unit scale to the lattice spacing on Af]. Now consider 
only vacancies on the unit scale and smaller. If r additional iterations of the process occur, 
each 1 x L rectangle on A:’ appears to be a miniature copy of (Notice that in fact 
an expanded configuration space is actually under consideration. In particular, the presence 
or absence of vacancies sitting below larger scale vacancies is noted in this larger space.) 
Hence, as r + 00, the probability of the analogue of CLLl in any one of these rectangles 
tends to one. Hence, for any 6 with 1 >> 6 > 0, let us rest assured that some r = r(k) 
has been chosen large enough so that in all the 1 x L rectangles, in AE, !with half integer 
coordinates) the appropriate analogue of the event CLL] has occurred with probability in 
excess of 1 - 6. 

For ease. of exposition, let us now revert to a continuum description-the discrepancy 
is half a unit-so the lattice AiL1 will now be regarded as unit squares that tile [0, Nk] x 
[0, LN’]. If only the rectangles [0,11 x [O, L], [I, 21 x [L,2L], . . . are considered-which 
stack up comer to comer-then with probability larger than 1 - 6, the event Ck: has been 
achieved. This, however, represents nothing ventured, nothing gained. The situation is 
vastly improved by taking into account the effects of vacancies on the unit scale. Working 
these vacancies in tandem with the collection of all the 1 x L rectangles with ‘built in’ 
contours on the smaller scales, it is straightforward to produce a simple contour with a 
height above the j th  column, Hj that is typically a great deal less than jL. 

The first step is to examine the square [0,1] x [0,1] and see if this houses a unit 
scale vacancy. If not, let us obsene the contour event that is the analogue of CiL1 in 
[O, 11 x [O, L] and proceed to the square [l, 21 x [L - 1. L]. On the other hand, if the 
square [O, 11 x [O, 11 is vacant., the contour is off to a good start and the next step is to 
examine the square [I, 21 x to, 11. Whichever outcome occurs, the procedure outlined, as 
translated appropriately, starts anew from the stated square. Thus, on the jth step, if the 
height of the current contour is Hj,  look at the unit square [ j ,  j + I] x [Hj - 1, Hi] and 
see if this is vacant. If not, tack on a 1 x L rectangle in the jth column in the form of 
the scaled down version of CiLJ in [ j ,  j + 11 x [Hj ,  Hj + L] (recall that this is guaranteed 
with conditional probability one) and it is concluded that Hj+l = Hj + L. However, if 
[ j ,  j + 11 x [Hj - 1. Hjl is vacant., this square is adjoined to the contour and HI+, = Hj. 

The procedure is illustrated in figure 2. It is noted that this ‘contour height process’ boils 
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down to adding up independent increments: 

Hj+l = Hj 
Hj+l = Hj + L 

with probability (1 - Q) 
with probability Q 

with (HI+, - Hj)  mutually independent for all j .  The contour is completed when j = Nk 
and the ultimate rescaled height, H N t / N k  averages to QL. Since this average is the result 
of independent and identical steps (with only two possible states) the rescaled height is 
smaller than any number in excess of QL with probability tending to one as k tends to 
infinity. If for any reason this programme has failed, e.g. for k large, say this happens with 
probability less than 2s. the whole game may be started anew (r + k)th level of the fractal 
percolation process. Evidently, if L’ > QL, the event C g ]  has probability one. 

success 

Figure 2. The ‘height process’. Here, L = 3. Notice that a more efficient process could 
have been derived in which after each success, the subsequent column height lowered by one. 
For non-integer values of L, partial decrease in the column height is pamitred after a success 
(although this advantage is throw away in the bound). 

The case of non-integer L is slightly complicated due to the non-commensurability of 
the 1 x L rectangles and the ‘lattice’ AiL1 but is otherwise almost identical. Let s and r 
denote integers with r > s. Consider the approximate 1 x L rectangles in AF1 that are of 
the form 

U N - ~  < y < aNTS + [LNS]NwS b < x < b + I 
where a and b are integers and [LNs]  is the largest integer smaller than LNs. Thus, for 
large s, these rectangles are ever so slightly larger than 1 x L’s but they have the advantage 
that they lock into the existing lattice structure. Let us denote their height by e. Within 
one of these rectangles, let us consider r iterations of the process helow the unit scale (as 
set by ALL’). Since, by hypothesis, Ckl has probability one, for r large, the probability of 
observing a scaled down version of in every one of these rectangles exceeds, let us 
say, 1 - S. 
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At this point, a height process may be constructed that is nearly identical to the one 
described in the integer case. Here we will also allow for the possibility of placing unit-scale 
vacancies slightly below the present height of the contour. Thus, if Hj is the height of the 
contour in the j th  column, the game is to look at the unit square in the j + 1st column with 
a height above the x axis of ([Hj] - l)+-the largest non-negative integer smaller than Hi. 
If the said square is vacant, then Hj+l = ([Hj] - I)+. On the other hand, if it is occupied, 
the height increases by the amount i by the tacking on of a 1 x . i  in the j + 1st column. 
This process is (stochastically) bounded by the process 

Kj+l = Kj 
Kj+l = Kj + i 

with probability (1 - Q) 

with probability Q 

and the argument proceeds in pretty much the same fashion as in the case of integer L. 0 

Proof of theorem A,. Let k be an integer and let Q be an integer between 1 and N k  - 2. 
Consider the region 

Tk(Q) = ( X ,  y E [o, 1]’10 < X 6, 1, (Q - l)N-k < )’ < (U +2)N-’}.  (11) 

Viewed as a subset of Ak, the region T&) is just an N k  x 3 rectangle. Let us divide T ~ ( Q )  
into a top, middle and bottom third and denote the top and bottom regions by Tk+(a) and 
T ~ ( Q )  respectively. Let %+(a) denote the event that there is a vacant simple contour in 
T ~ + ( Q )  and, similarly, let %-(a) denote the event that a reflection of a simple vacant contour 
(i.e. one that blocks SE-oriented crossings) occurs in T;(Q). It is not hard to see that the 
event %+(Q) does not allow any occupied stiff path starting on the segment {O} x [a, Q + 11 
to rise above the line y = Q + 2 and similarly, the event %-(a) prevents any such path 
from falling below the line y = a - 1 (cf figure 3). 

Figure 3. The absence of stiff permlation. 

As a consequence of the result derived in the proof of theorem A,, the events %+(Q) 

and T(Q) both have probtbility one. Suppose that, in addition, there are three vertically 
stacked squares of side Nmk in the region G(Q) that are all vacant. As illustrated in figure 3, 
this ‘blocking wall’ joins with the contours in T,‘(Q) and T;(Q) and is seen to prevent any 
stiff path emanating from (0lkx [Q, Q + 11 to reach the line x = 1. The probability of a 
blocking wall is 1 - (1 - thus if k is large, there is a blocking wall in each T,(Q) with 
probability close to one. From this it follows easily that for any Q -= 1, qW(Q) = 0. 0 
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